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Continuity Law: 

 

A simplified continuity equation describes the transport of conserved quantity of fluid.  

Continuity equations are the (stronger) local form of conservation laws. All the examples of 

continuity equations below express the same idea, which is roughly that: the total amount (of 

the conserved quantity) inside any region can only change by the amount that passes in or out 

of the region through the boundary. A conserved quantity cannot increase or decrease, it can 

only move from place to place. 

  

In fluid dynamics, the continuity equation is a mathematical statement that, in any steady state 

process, the rate at which mass enters a system is equal to the rate at which mass leaves the 

system. In fluid dynamics, the continuity equation is analogous to Kirchhoff's Current Law in 

electric circuits. 

 

Let’s assume that in the pipe or duct 

network there are two regions where the 

fluid can enter and leave within the control 

volume: 

 

Under steady state circumstances at the first 

surface a following amount of mass enters 

during unit time (mass flow rate): 

1

2

111 )(mA(m/s)v=(kg/s)m   

Same equation describes the mass which leaves the second surface: 

2

2

222 )(mA(m/s)v=(kg/s)m   

If there is no any mass source within the control volume 
21 m=m  , thus 
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11 )(mA(m/s)v)(mA(m/s)v=(kg/s)m    

If the flow is incompressible
21   , thus the entering volume and leaving volume during unit 

time is equal (Volume flow rate):  

)(mA(m/s)v)(mA(m/s)v=/s)(mV 2
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3   

 

Mass flow rate is the mass of substance which passes through a given surface per unit time. 

Its unit is mass divided by time, so kilogram per second. It is usually represented by the 

symbol m  

 

 

The volume flow rate (also known as volumetric flow rate or rate of fluid flow) is the volume 

of fluid which passes through a given surface per unit time (for example cubic meters per 

second [m3 /s] or example cubic meters per hours [m3 /h]. It is usually represented by the 

symbol V . 

 

 

ro1;v1;A1;

ro2;v2;A2;

http://en.wikipedia.org/wiki/Mass
http://en.wikipedia.org/wiki/Time
http://en.wikipedia.org/wiki/Physical_unit
http://en.wikipedia.org/wiki/Time
http://en.wikipedia.org/wiki/Kilogram
http://en.wikipedia.org/wiki/Second
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Example 1: 

 

1. In a duct network, because of acoustic problem, the maximum velocity of the air is 4m/s.  

 

a. What is the size of a circular duct of an exhaust ventilation network if the necessary 

volume flow rate of a ventilated zone is 3 000m3/h  

 

 

b. What is the size of a square shaped duct of an balanced ventilation network if the 

necessary volume flow rate of a ventilated zone is 5 000m3/h, and the ratio of the sides 

of a duct is 1.5. 

 

Result: 
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Bernoulli’s Equation for ideal fluid 

 

Ideal fluid: 

The ideal fluid is the continuous fluid (without molecules) which is incompressible, it has 

constant density and frictionless. 

Steady state flow: 

In any given point the velocity of a fluid is constant, only depends on the locality.  

In most flows of liquids, the 

mass density of a fluid parcel 

can be considered to be 

constant, regardless of 

pressure variations in the flow. 

For this reason the fluid in 

such flows can be considered 

to be incompressible and these 

flows can be described as 

incompressible flow. 

Bernoulli performed his 

experiments on liquids and his 

equation in its original form is 

valid only for incompressible 

ideal and steady state flow.  

 

A common form of Bernoulli's equation, valid at any arbitrary point along a streamline where 

gravity is constant, is: 

tconshg
p

tanv
2

1 2 


 

where: 

v(m/s) is the fluid flow speed, 

g(m2/s2) is the acceleration due to gravity,  

h(m) is the elevation of the point above a reference plane,  

p(Pa) is the pressure at the point, 

ρ(kg/m3) is the density of the fluid at all points in the fluid. 

In that equation the three additional part of the equation are the Kinetic, pressure, and 

potential energy of unit mass flow rate of a flowing fluid.  Thus the Bernoulli’s equation 

represents the total energy content of a flowing fluid over a unit mass flow rate ( mE  ). 

 

Kinetic energy of a flowing fluid: 

2vm
2

1
 

kE  

Work ability of a flowing fluid because of pressure: 

p
m

pVE p 


  

Potential energy of a flowing fluid: 
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hgmEh    

By multiplying with the mass density ρ, the energy form of Bernoulli’s equation can be 

rewritten as: 

tconshgp tanv
2

1 2    

In this equation each additional parts has pressure unit (Pa), thus the three forms of energy 

(and working ability) are expressed in pressure. For horizontal pipes of ducts the potential 

energy does not change thus the above equation becomes: 

tpp  2v
2

1
  

In which p is the static pressure and 2v
2

1
 is the dynamic pressure (pd). Dynamic pressure is 

closely related to the kinetic energy of a fluid particle, since both quantities are proportional to 

the particle's mass (through the density, in the case of dynamic pressure) and square of the 

velocity.  The total pressure of a horizontally flowing fluid is equal to the static and dynamic 

pressures.  

 

By dividing with the acceleration gravity, the energy form of Bernoulli’s equation can be 

rewritten as: 

Hh
g

p






2v
2g

1
 

The constant in the Bernoulli equation can be normalised.  A common approach is in terms of 

total head or energy head H. 

The above equations suggest there is a flow speed at which pressure is zero, and at even 

higher speeds the pressure is negative. Most often, gases and liquids are not capable of 

negative absolute pressure, or even zero pressure, so clearly Bernoulli's equation ceases to be 

valid before zero pressure is reached.  
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Applications: 

 

Flow from opened tank: 
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Assumptions: 

012121  vvvAA  

021 ppp   

Thus: 

21

2

2v
2

1
hghg  , 

21 hhh  , 

hg  2v2
 

hgAA  2vV 222
  

 

Venturi Tube: 
 

Venturi tube is a device that consists of a gradually decreasing nozzle through which the fluid 

in a pipe is accelerated, followed by a gradually increasing diffuser section. 

There is a pressure difference in between 

section 1 and 2. That pressure difference for 

ideal flow can be calculated by using the 

energy form of Bernoulli’s theory (It is 

obvious that for ideal flow in between section 

1 and 3 there is no pressure difference, if 

A1=A3 and h1=h3 because v1=v3). 
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p1 assumed higher than p2, than reordering 

the equation to (p1-p2): 
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pressure: 
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The fluid velocity must increase through the constriction to satisfy the equation of continuity, 

while its pressure must decrease due to conservation of energy: the gain in kinetic energy is 

balanced by a drop in pressure or a pressure gradient force. 

Venturi tube can be used to measure the volumetric flow rate in the pipe. The ability of the 

venturi tube to regain much of the original pressure head makes it especially useful in 

measuring the flow rate in systems which have a low pressure differential. 

 

The simplest apparatus, as shown in 

the diagram, is a tubular setup simply 

a venturi. Fluid flows through a 

length of pipe of varying diameter. 

To avoid undue drag, a Venturi tube 

typically has an entry cone of 30 

degrees and an exit cone of 5 

degrees.  

Since 

)vv(
2

1 2

1

2
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Example 2 

 

In the Venturi the pressure difference measured by water column manometer is h=400mmWG 

(water gauge). The measured media is air.  Estimate the volume flow rate of the air in m3/h. 

The airflow assumed incompressible ideal. 

 

Parameters: 

Density of the air: ρa=1,2kg/m3   

Inlet diameter of the veturi D1=300mm 

Throat diameter of the venturi D2=200mm 

Density of the water in the column manometer: ρw=1000kg/m3 

 

Result: 

Pressure difference of the venturi:  Pa
mm

smmkghgpp w 4000
1000
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/10/1000 223

21     

Surface ratio constant of the venturi:  
     
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Friction loss 

 

Friction loss refers to that portion of pressure lost by fluids while moving through a pipe, 

hose, or other limited space.  

 

Friction loss has several causes, including: 

 

 Frictional losses depend on the conditions of flow and the physical properties of the 

system.  

 Movement of fluid molecules against each other  

 Movement of fluid molecules against the inside surface of a pipe or the like, 

particularly if the inside surface is rough, textured, or otherwise not smooth  

 Bends, kinks, and other sharp turns in hose or piping  

 

In pipe flows the losses due to friction is of two kind first the skin-friction and the other is 

form-friction, the former one is due to the roughness in the inner part of the pipe where the 

fluid comes in the contact of the pipe material and the latter one is due to the obstructions 

present in the line of flow, it may be due to a bend or a control valve or anything which 

changes the course of motion of the flowing fluid. 

 

Friction loss in straight pipe or duct: 

 

In fluid dynamics, the Darcy–Weisbach equation is a phenomenological equation, which 

relates the head loss — or pressure loss — due to friction along a given length of pipe to the 

average velocity of the fluid flow. 

  

The Darcy–Weisbach equation contains a dimensionless friction factor, known as the Darcy 

friction factor. This is also called the Darcy–Weisbach friction factor or Moody friction factor 

(f). Friction loss expressed by the pressure loss form:  

D

L
fvp  2

2


 

where the pressure loss due to friction Δp’ is a function of: 

 the ratio of the length to diameter of the pipe, L/D;  

 the density of the fluid, ρ;  

 the mean velocity of the flow, v 

 a (dimensionless) coefficient friction factor of laminar, or turbulent flow, f.  

 

The friction factor depends on the  Reynolds Number and relative roughness of a pipe or 

ducts. Reynolds number (Re) is a dimensionless number that gives a measure of the ratio of 

inertial forces to viscous forces. For flow in a pipe or tube, the Reynolds number is generally 

defined as:  



 Dv 
Re  

where: 

 D is the hydraulic diameter of the pipe (m).  

 μ is the dynamic viscosity of the fluid (Pa·s or N·s/m² or kg/m·s) 

   

http://en.wikipedia.org/wiki/Laminar
http://en.wikipedia.org/wiki/Turbulent_flow
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Relative roughness is a measure of the surface roughness of pipe surfaces. It is the size of the 

roughness scaled by the diameter of the pipe or duct. Rel Roughness=ε/D; where e is the 

measurement of the surface roughness and D is the diameter of the pipe. 

 

Simplified method for water – Hazen-Williams equation 

The Hazen–Williams equation is an empirical formula which relates the flow of water in a 

pipe with the physical properties of the pipe and the pressure drop caused by friction. It is used 

in the design of water pipe systems such as fire sprinkler systems, water supply networks, and 

irrigation systems. The Hazen–Williams equation has the advantage that the coefficient C is 

not a function of the Reynolds number, but it has the disadvantage that it is only valid for 

water. Also, it is not able to account for the temperature or viscosity of the water. 

87,485.1
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67.10 





















DC

V
s

L

p 
 

where: 

 s’ is Head loss (in m of water) per m of pipeline  

 C is a roughness coefficient. Typical C factors used in design, which take into account 

some increase in roughness as pipe ages are as follows: Asbestos-cement: 140; Cast 

iron: 100-140; Cement-Mortar Lined Ductile Iron Pipe: 120; Concrete:100-140; 

Copper:130-140; Steel:90-110; Galvanized iron:120; Polyethylene:140; Polyvinyl 

chloride (PVC):130; Fibre-reinforced plastic (FRP):150    

http://upload.wikimedia.org/wikipedia/en/8/80/Moody_diagram.jpg
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Friction loss of fittings: 

 

In stead of viewing hydraulic details of different fittings like bend, area extension, area 

reduction etc as occurring over different pipe and duct diameters, it is possible to treat the 

entire effect as a single point in the flow direction. Be treating these losses as a local 

phenomenon, they can be related to the dynamic pressure by the fitting loss coefficient: 




  2

2
vpp d

 

Where  is a unit less fitting loss coefficient, which can be found in pipe or ducts friction 

manuals.  Normally in any given pipe or ducts section there is more than one fittings, thus the 

above equation can be generalized for a section which does not have area changes (if the area 

changes based on continuity the average velocity should be recalculated) by summarizing each 

fitting losses: 

  


 2

2
vpp d

  

Quite often in stead of using friction loss equivalent length of a fitting is used: 


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D

L
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after dividing by the dynamic pressure (assuming there is no change in the diameter) 



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


D

L
f e   

the equivalent length equation can be developed: 

D
f

Le 


 

The meaning of the equivalent length is the original length of the pipe is extended by the 

additional fitting losses. 

 

 

Generalized friction loss equation: 

 

For any given pipe or duct section where the cross section remains constant, but there is more 

than one fitting the friction loss equation as follows: 
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Hydraulically equivalent diameter: 

 

The hydraulic diameter, DH, is a commonly used term when handling flow in noncircular 

tubes and channels. Using this term one can calculate many things in the same way as for a 

round tube. 

Definition: 

P

A
DH




4
 

 

where A is the cross sectional area and P is the wetted perimeter of the cross-section. 

 

For a round tube, this checks as: 
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and for a rectangular duct, if completely filled with fluid: 
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http://en.wikipedia.org/wiki/Flow
http://en.wikipedia.org/wiki/Calculate
http://en.wikipedia.org/wiki/Circle
http://en.wikipedia.org/wiki/Cross_section_(geometry)
http://en.wikipedia.org/wiki/Area
http://en.wikipedia.org/wiki/Wetted_perimeter
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Example 3 

 

There is a pipe section of a water heating system. The volume flow rate of it is 1m3/h. 

Estimate the total pressure loss of a pipe section. 

 

Parameters: 

Density: ρ=1000kg/m3 

fitting loss coefficients:  

ξ1=1, ξ2=1, ξ1-2=0,5 

friction factor 

f1=0,027, f2=0,027 

Diameters: 

D1=25mm, D1=35mm 

Lengths (m): 

L11=1, L12=0,5, L13=1, L14=1,5  

L21=1, L22=0,5, L23=1, 

 

In between section 1 and 2 there is an area extension. Because of continuity velocity of section 

1 is different than section 2. Than the pressure loss is estimated separately for section one and 

two. 

Solution: 

Velocity of section 1:  sm
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Pressure loss of a first section:  
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Velocity of section 2:  sm
d

V
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Pressure loss of a second section:  
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D
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Notice that, because of area extension the pressure loss of the second section much less than 

the firs one. 

 

The total pressure loss: 

PaPaPappp 1578164141421   


