Smart Controlling in Hydraulic Systems

GRUNDFOS South East Europe Kft. Geyer Szilveszter +36-30-212-1282 szgeyer@grundfos.com

be think innovate

What does make water moving In a hydraulic system (HVAC)?

- A. Natural water flow in heating system due to pressure/temperature difference
- B. By pumping solutions (usually centrifugal pumps)

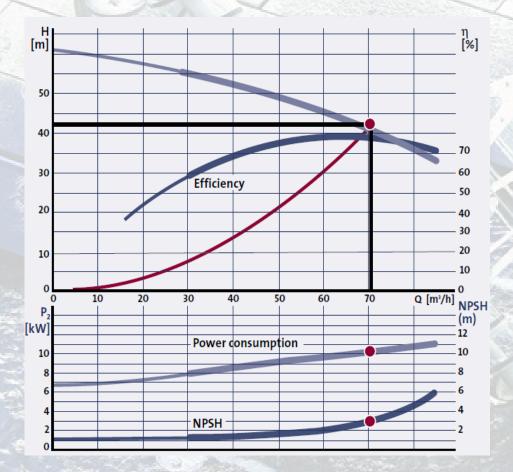
be think innovate

Why pumps are used?

- A. Low temperatures and Dt are used in heating systems -> insufficient pressure difference
- B. Low temperature heating systems and high temperature cooling systems
- C. Large hydraulic networks represents great challanges.

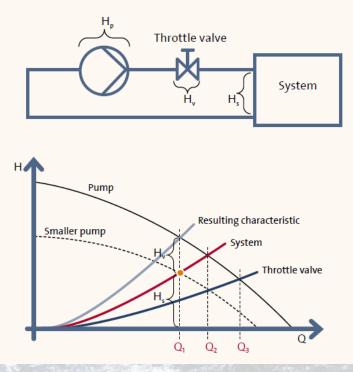
Do we need to control the pump? Do we use same flow all the time?

- A. Some applications needs constant flows, therefore, a basic control (ON-OFF) is enough. Easy to ballance.
- B. Sometimes constant flow equipments works in cascade, each system should have its constant flowrate – ballancing!
- C. Most of the secondary systems are working with variable flow, due to variable needs.

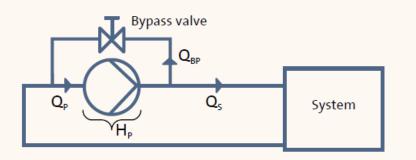


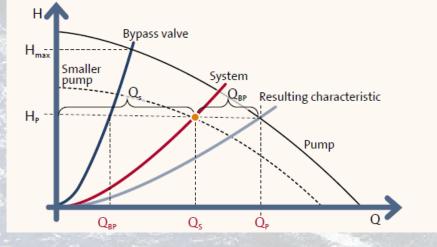
How can we control the flow in a system? (pipe sizing is not enough)

- A. By switching ON/OFF some valves (2/3 way valves)
- B. By controlling a pump performances (see different control modes)
- C. By using a combination of those two
- D. By using alternative C + zoning the system + using right number of pumps for matching the duty.


How to control the flow of a pump?

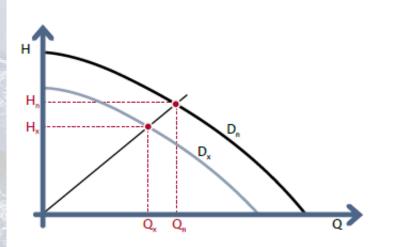
- A. Throttling valve (adding extra losses)
- B. Using Bypass line
- C. Trimming impeller
- D. Using multiple pumps in paralel operation
- E. Using VFD for varying performances.




How to control the flow of a pump? Throttle valve method

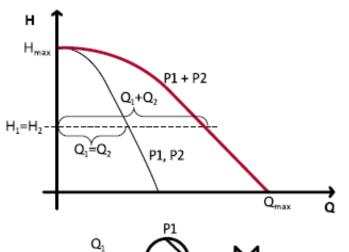
- A. Cheap solution
- B. Commonly used see ballancing valves along circuits.
- C. Not very energy efficient, however it is still needed in large quantities.
- D. It is not always dynamic (e.g. simple throttle valves vs differential pressure valves)
- E. Not dynamic system!

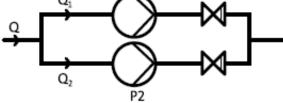
How to control the flow of a pump? Bypass valve



- A. Cheap solution
- B. Resulted flow over pump will be higher
- C. Resulted flow in system will match the demand (constant flow)
- D. Energy consumption will be high.
- E. Not dyanmic system

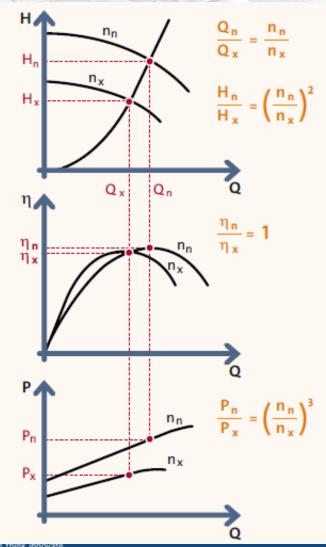
How to control the flow of a pump? Modifying impeller diameter




D

- A. Cheap solution if ordered accordingly
- Best solution to keep efficiency at high rate
- C. QH curve will be as close as possible to optimal
- D. Good energy consumption
- E. Later changes are not really possible (replacing impellers involves labour cost + new impeller)
- F. No dynamic system

How to control the flow of a pump? Multiple pump solution



- A. Single speed pump systems or variable speed pumps might be used.
- B. Parallel installed pumps flow will sum (not necessary double the flow)
- C. Efficiency could be high
- D. Could be risk in part load conditions – cavitation could occur in some cases if system curve goes outside the pump curve.

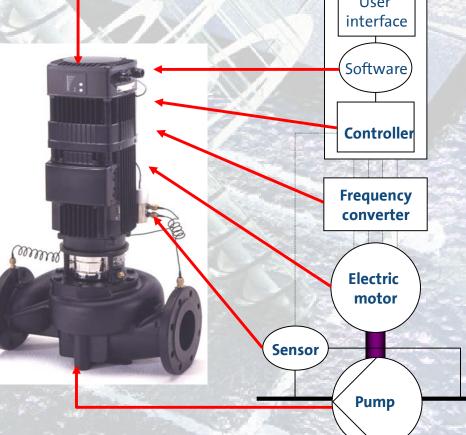
How to control the flow of a pump? Variable speed pump

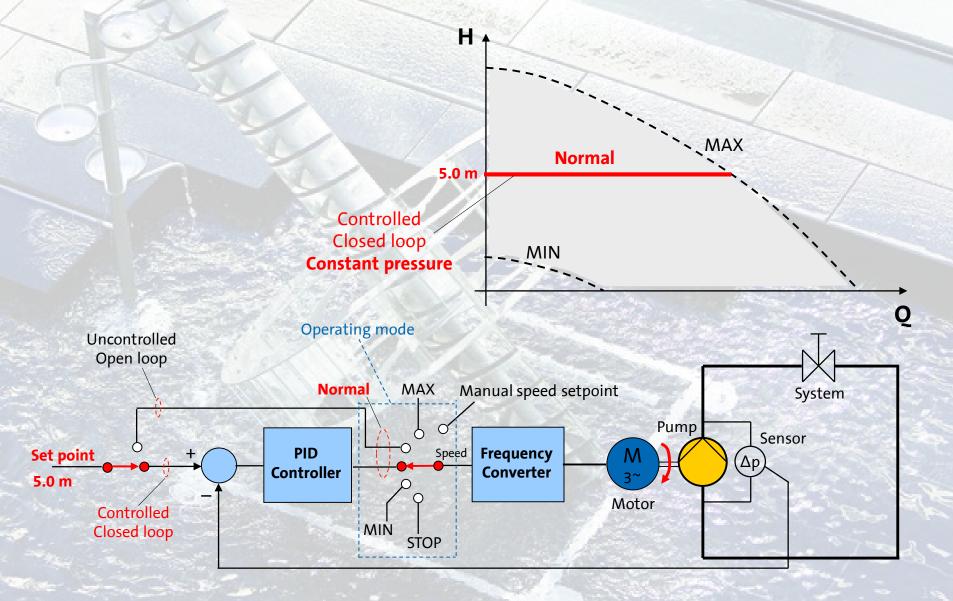
- A. Highest investment cost
- B. Flexible solution.
- C. Variable flow and adaptation to the system demand
- D. Can be used with different controlling algorythms
- E. Might not be able to solve all problems alone

LCC comparison of different pump control

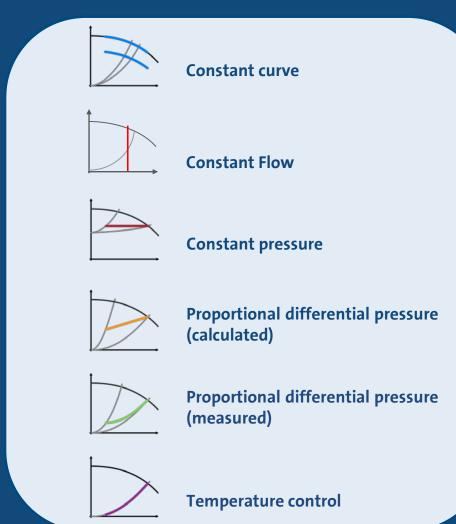
Initial pump flow	100,00 m3/h								
Pump height	30 mWS								
Desired flow	80 m3/h								
Desired pressure	19 mWS								
	Gri	undfos NB65-16	4x NB40-	4x NB40-					
Reference pump	GIU		160/149	160/149					
P1		1	4						
Efficiency		0,8	0,638	0,63					
P1 in duty point		10	14,24	14,2					
NPSH		3,	2,06	2,0					
Nr. Of pumps		:	1		4				
Control mode	Throttle valve	Bypass line	Trimmed impeller	VFD	Multiple pumps	Multiple pumps with VFD			
Impeller diam.	159	159	134	159	149	149			
Resulted Flow	80,00 m3/h	134,00 m3/h	80,00 m3/h	80,00 m3/h	91,40 m3/h	80,00 m3/			
Resulted Pressure	32,52	25,11	19,36	18,96	24,91	18,9			
Pump efficiency	0,782	0,819		0,83	0,73	0,73			
P1	9,51	11,79	5,753	5,606	9,44	6,4			
NPSH Resulted	3,18	5,18	4,69	2,43	3,25	2,5			
Notes	Throttle valve closed partly	Bypass line opened	Impeller modified	VFD set	2 pumps been stopped	2 pumps at 87%			
	closed partiy		T CALCULATION		stopped				
Pump	1 954,00 EUR	1 954,00 EUR		1 954,00 EUR	4 200,00 EUR	4 200,00 EU			
VFD	0,00 EUR	0,00 EUR		1 382,00 EUR	0,00 EUR	3 100,00 EU			
Bypass line	0,00 EUR	200,00 EUR	0,00 EUR	0,00 EUR	0,00 EUR	0,00 EU			
Throttle valve	250,00 EUR	0,00 EUR		0,00 EUR	0,00 EUR	0,00 EU			
Impeller trim. Cost	0,00 EUR	0,00 EUR		0,00 EUR	0,00 EUR	0,00 EU			
Total cost of syst.	2 204,00 EUR	2 154,00 EUR	2 594,00 EUR	3 336,00 EUR	4 200,00 EUR	7 300,00 EU			
Annual working hours	4320								
Total energy consumption/yr	41083,20 kWh	50932,80 kWh	24852,96 kWh	24217,92 kWh	40780,80 kWh	27907,20 kW			
Energy Consumption 15 yr	616248,00 kWh	763992,00 kWh	372794,40 kWh	363268,80 kWh	611712,00 kWh	418608,00 kW			
Electric rate		0,10 EUR							
Electrical costs	61 624,80 EUR	76 399,20 EUR	37 279,44 EUR	36 326,88 EUR	61 171,20 EUR	41 860,80 EUR			
Service costs-15 yr	2 200,00 EUR	2 200,00 EUR	2 200,00 EUR	2 200,00 EUR	3 000,00 EUR	3 000,00 EUR			
Life Cycle Cost	66 028,80 EUR	80 753,20 EUR	42 073,44 EUR	41 862,88 EUR	68 371,20 EUR	52 160,80 EUR			

GRUNDFOS X


Larger pump or 2 smaller pumps?

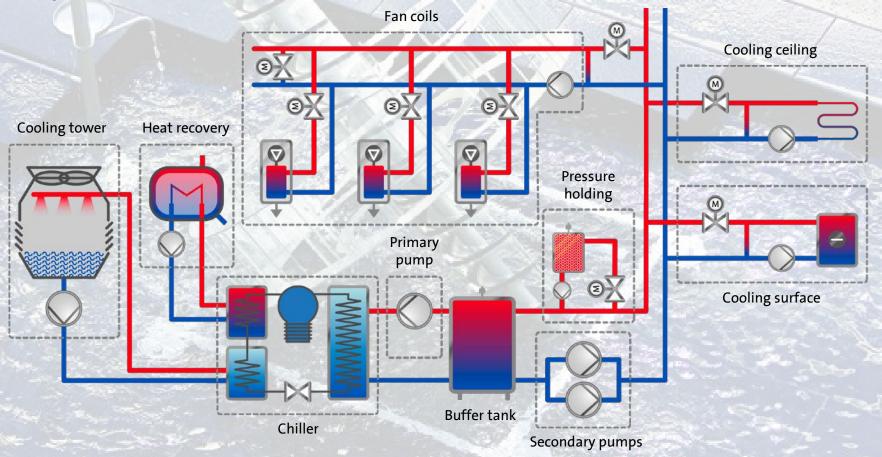

Is a VFD equipped pump enough to ensure variable flow on system?

Electronic pumps (with VFD) does not guarantee variable flow/conditions unless there is a feedback sensor!


Working Schematic of VFD controlled pump

be think innovate

Basic pump control modes. Where and when to use them?


Air Con system – choosing control modes

An advanced air conditioning system consists of a number of elements, and the control mode you choose for each one is important to the overall energy consumption in the system.

System components

As an example we will look at a variable flow system with a constant flow chiller. The system consists of the elements shown below.

Control modes

Constant curve

Each unit in the system runs on its own pump, and for each pump you can apply one or more control modes.

The control modes are listed here, and in the next slides we will look at the different control modes and explain their characteristics.

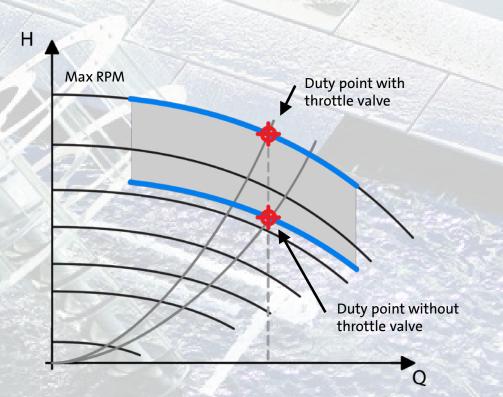
Constant Flow

Constant pressure

Proportional differential pressure (calculated)

Proportional differential pressure (measured)

Temperature control

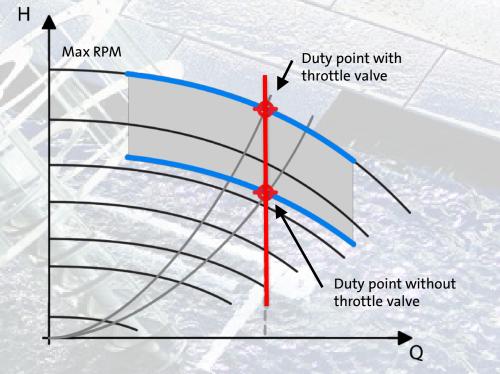


be think innovate

Constant curve mode

- Pump is adjusted once and for all
- Usually no need for sensors
- No need for throttle valve
- Used when there is a demand for constant flow and head

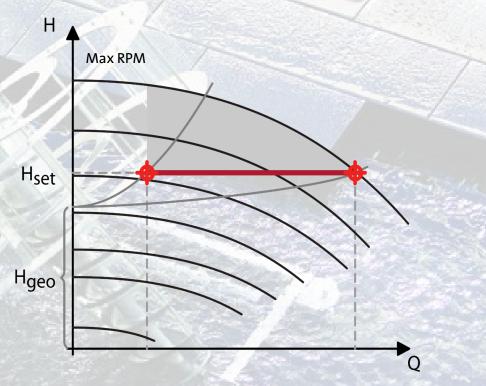
- Primary pumps
- Cooling coils
- Cooling towers



Constant flow mode

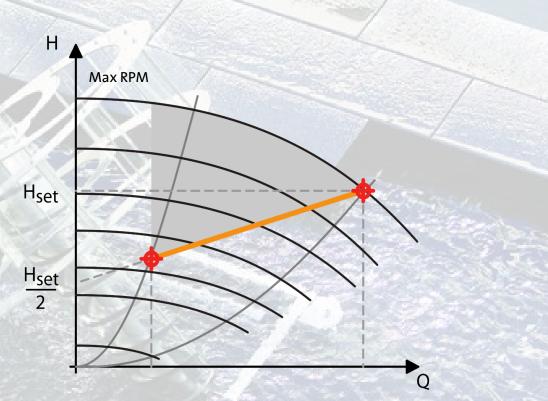
- Pump will keep constant flow depending on system resistance variation
- No need for throttle valve
- Used when there is a demand for constant flow and head

Suitable in case of cascade systems


- Primary pumps
- Cooling coils
- Cooling towers

Constant pressure mode

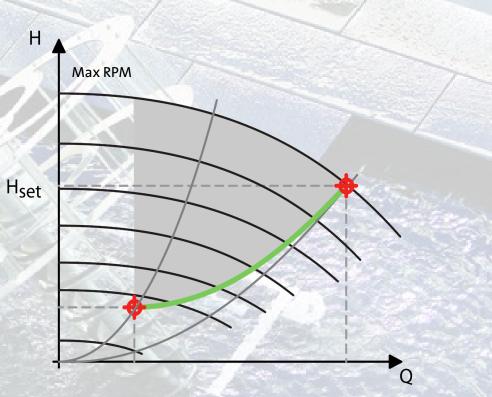
- Pump speed provides constant pressure at the pressure sensor
- Suitable for
 - Pressure holding systems
 - Surface heating/cooling systems
 - Parallel distribution systems



Proportional differential pressure mode (calculated)

 Head and speed are adjusted according to the differential pressure setpoint

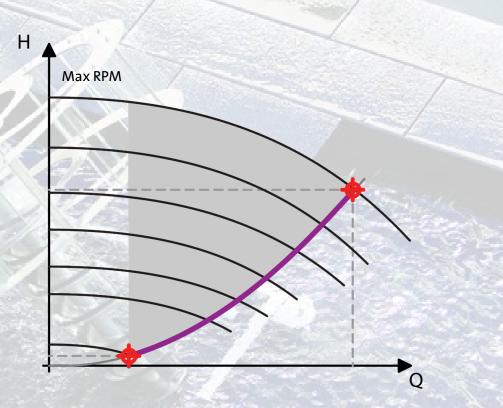
- Secondary pumps
- Mixing loop pumps for fan coil and cooling ceiling systems



Proportional differential pressure mode (measured)

- Head is dependent on a differential pressure sensor in a reference point
- Head decreases when flow is reduced

- Secondary pumps
- Mixing loop pumps for fan coil and cooling ceiling systems



Differential Temperature mode

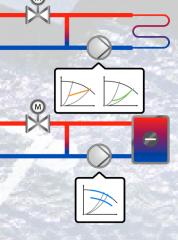
 Here the pump speed is controlled according to a temperature in a certain reference point. For example pre-heating water in a hot water tank

- Heat recovery system
- DHW recirculation
- Boiler shunt pump
- etc

Pump control modes

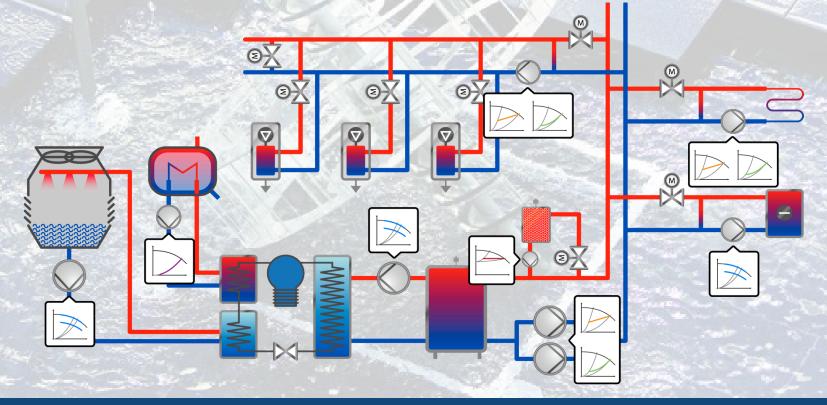
(2)

The best control modes for each pump in the air conditioning system.



Constant pressure Proportional differential pressure (calculated)

Proportional differential pressure (measured)


Temperature control

Who is generating the different conditions?

Control valves will add/cut pressure by closing or opening themselves. Valves are either controlled by thermostatic systems or BMS systems. Complex controlling system is a must in every modern building. Smart regulation can not be achieved using only mechanical equipments.

That is why we need smart pumping and controlling solutions.

Electronic solutions are not smart enough to work alone.

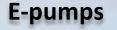
Many years HVAC systems was consisting on individual equipments, where fine tuning was missing.

A HVAC system must be seen as a SYSTEM, together with all other elements of the building

Two way communication is a must. Unist must work proactively!

Smart Pump Features

- Self learning and Automatic adaptation
- Two way communication and with different platforms – e.g. smartphones
- System optimisation and diagnostics
- Information instead of data!



iSolution – the smart platform of Grundfos

iSolution Pump + Drive + Control + Measurment + Communictaion

iSolution – the smart platform of Grundfos

be think innovate

Communication interface

Standard Communciation Protocols for integration in BMS or with Cloud monitoring systems and smart phones

Online software package for design support.

Pod T

< Dashboard

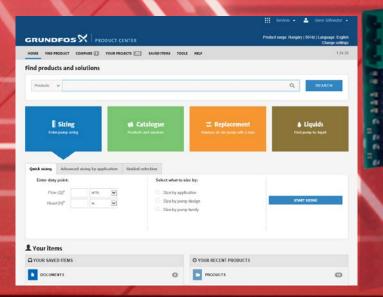
1000

14.30

8.6

° / • ?

43

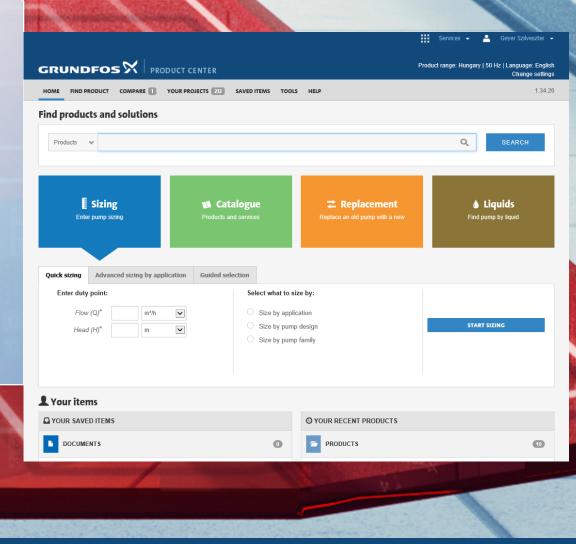

CRUNDFOS X

BACnet MS/TP

O

110* 10* 8.9

9.0



Grundfos Product Center

Complete online pump selector platform

- Comprehensive sizing tools
- ✓ Replacement Tool
- Available on smart phones, tablets and PC
- All informations at your hand datasheet, documents, drawings
- ✓ LCC Calculation
- Project modules
- Sharing information
- List Prices and ETA
- Comparison modules

Smart Communication interface – software + GPC Access

Grundfos GO

- Using Smart Phone for increased user experience
- Pump control and diagnose in wireless mode
- User Friendly
- Data Collections
- Pump sizing and search functions

Page 4 of 5

Pump Setting Reports via e-mail

Grundfos GO report				
Title 1-2-es szivattyu	Author	nberg Szilveszter Zoltan		
- I-2-es szivattyu *4 Gey				
Date April 24, 2018	Number of 2	umber of Images		
Service report ID	Warranty Available			
S Lifecycle Normal operation				
Notes: Nyomáskül. Távadó feltehetőleg eldugult	Javaslom cseréjét.			
Unique product identification data				
Product specific information		Info value		
Product type		MGE Series 3000		
Production code		2007-7		
Product information Product information		Info value		
Туре		4/TP(D)100-390/3R430/3000/22		
Product type				
		MGE Series 3000		
Serial number		45		
Serial number Software		45 HMLarge V010500		
Serial number Software Software		45 HMLarge V010500 GMDS V10400		
Serial number Software Software Configuration		45 HMLarge V010500 GMDS V10400 95139461		
Serial number Software Software		45 HMLarge V010500 GMDS V10400		
Serial number Software Software Configuration Production code		45 HMLarge V010500 GMD5 V10400 95139461 2007-7		
Serial number Software Software Configuration Production code Config. date		45 HMLarge V010500 GMD5 V10400 95139461 2007-7		
Serial number Software Software Configuration Production code Config. date		45 HMarge V010500 GMD5 V10400 91319461 2007-7 837		
Serial number Software Configuration Production code Config. date (alues/settings: Parameter		45 HMLarge V005500 GMD5 V10400 95139461 2007-7 837 Value		
Serial number Software Configuration Production code Config. date (alues/settings: Parametr Next service, Time to next service		45 HMarge V010500 CMD5 V10400 99139461 2007-7 837 Value In 6 months		
Serial number Software Software Configuration Production code Config.date /alues/settings: Parameter Next service, Time to next service Next service, Service type		45 HMLarge V00500 95139461 20077 837 Value In 6 months Lubricate bearings		
Serial number Software Configuration Production code Config date /alues/settings: Parameter Next service, Time to next service Next service, Time to next service Next service, Time to next service Controlled from		45 HMarge V010500 CMD5 V10400 99139461 2007-7 837 Value In 6 months Lubricate bearings Not active		
Serial number Software Configuration Production code Config. date Values/settings: Parameter Parameter Next service, Service type External setpoint Actual setpoint		45 45 45 45 45 45 45 45 45 45		
Serial number Software Configuration Production code Config date Values/settings: Parameter Next service, Time to next service Next service, Time to next service Next service, Time to next service Lexternal setpoint Actual setpoint Controlled from		45 HMarge V010500 CMD5 V10400 99139461 2007-7 837 Value In 6 months Lubricate bearings Not active 54 % Grundfos CO		

Grundfos GO report	Page 2
Energy consumption	17598 kWh
Power consumption	3.5 kW
Operating hours	2788 hours
Motor current	13.0 A
Max. motor current	28.2 A
Number of starts	32
Operating mode	Normal
Control mode	Constant curve
Setpoint, Resulting setpoint	54 %
Setpoint, Set setpoint	54 %
Limit 1 exceeded	Deactivated
Limit 2 exceeded	Deactivated
Relay 1 activated during	Fault
Relay 2 activated during	Fault
Buttons on product	Active
Number	-
Digital input 2	Maximum
Motor bearing monitoring	Not active
Bearing temperature, DE	Disabled
Bearing temperature, NDE	Disabled
Standstill heating	Disabled
Ramps, Ramp-up time	20.0 s
Ramps, Ramp-down time	20.0 s
Max. No. of lubrications	20.0 5
Previous service work, Bearing replacements	0
Previous service work, Number of lubrications	0
_	
Гуре	Description
Alarm code	0: No active alarm
Alarm log 1	88: Sensor signal outside range
	2 minutes ago,
	April 24, 2018 at 1:27 PM
Alarm log 2	88: Sensor signal outside range
	4 minutes ago,
	April 24, 2018 at 1:25 PM
Alarm log 3	88: Sensor signal outside range
	14 minutes ago,
	April 24, 2018 at 1:15 PM
Alarm log 4	88: Sensor signal outside range
0	16 minutes ago,
	April 24, 2018 at 1:13 PM
Alarm log 5	88: Sensor signal outside range
	16 minutes ago,
	April 24, 2018 at 1:13 PM

Crun	dfor	CO	report	
ului	luius	UU	IEDUIL	

Image 1

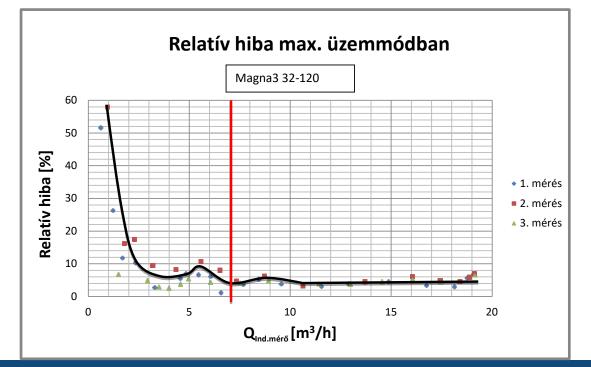
be think innovate GRUNDFOS X

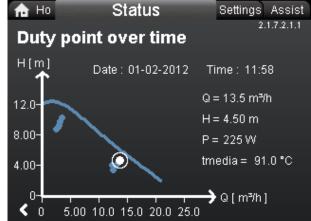
ก

RUNDFOS

Circulation Pumps using iSolution platform

MAGNA3 – High Efficiency Wet Runners

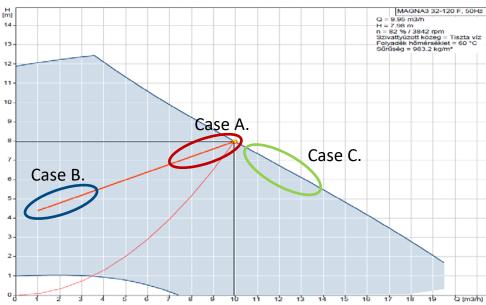

- Self Learning (AutoAdapt) Function and System Diagnose
- Built in measurement functions: Flow, Pressure, Power, Energy, Temperature, Heat Energy,
- Special Control Modes FlowLimit and Flow Adapt
- Communication with Smartphone Wireless Cascade Communication
- Buszkommunikáció

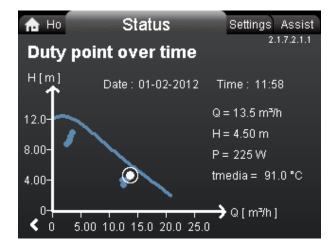


Diagnose and Optimisation in Magna3 and TPE3

System Hydraulic

- Pressure measurement (built in sensor) Accuracy: 2% (FS)
- Flow Measurment (calculated) Accuracy: 3-5% (FS), in 90% of the curve

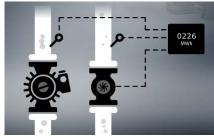


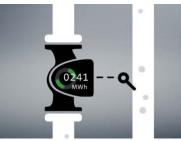

GRUNDFOS

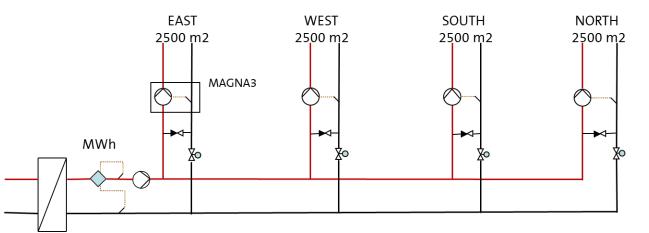
Diagnose and Optimisation in Magna3 and TPE3

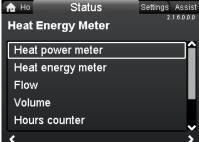
Optimisation using trend data

Shows historical data presentation over time compared to curve Real system processes!!!!

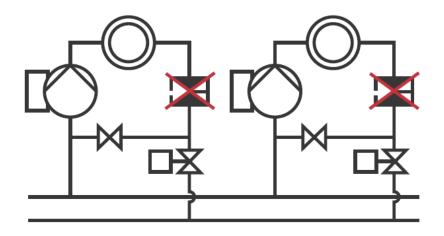

- n Ho Status Settings Assist 217220 Work History Log t [hours] 700 600 500 400 H[m] 300 7.00 10.0 14.0 17.0
 - GRUNDFOS 🕅

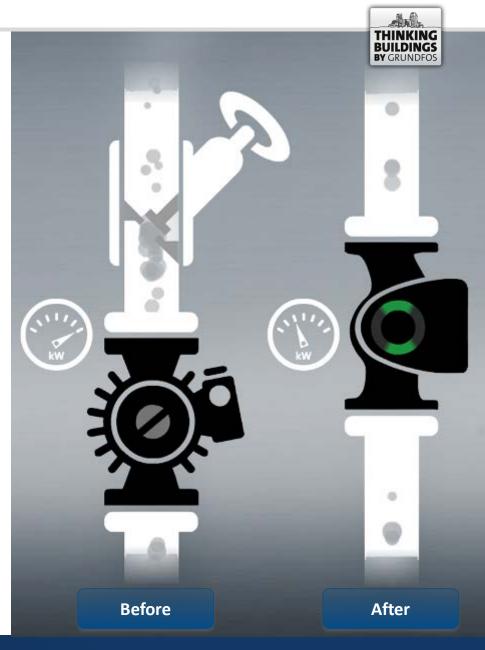

- Case A. : Q > Q_{Design}, unballanced system, high value setpoint (Static ballan.), Low flow temperature (weather compensation control.)
- Case B.: overside pump, higher pressure losses than design val. (Q < Q_{Design})
- Case C.: High value setpoint, Ballancing issues (FLOWlimit)


Diagnose and Optimisation in Magna3 and TPE3


System Energy Ballance

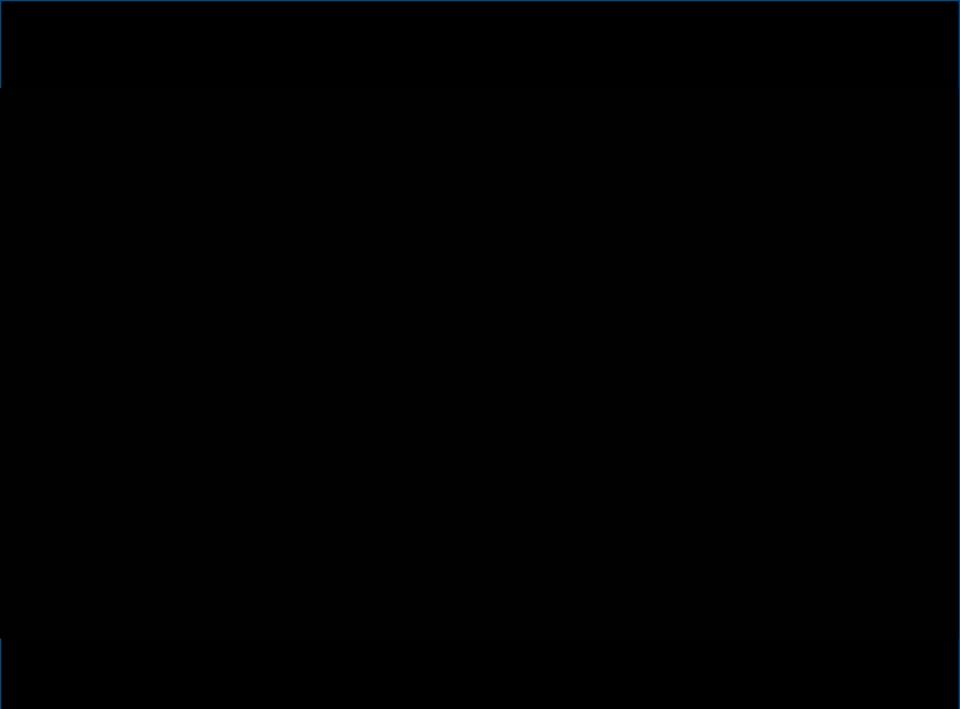
- Heat Energy Monitor function:
 - Measurment accuracy +/-1% és +/-10% varying on system conditions.
 - External temperature transducer (on return pipe) directly in pump.
 - Very good for Energy Balance

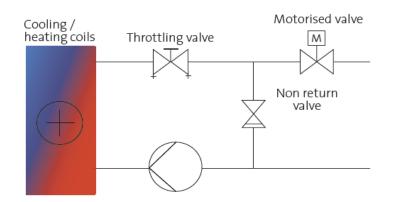



GRUNDFOS

INTELLIGENCE IN THE MAGNA3

FLOWLIMIT

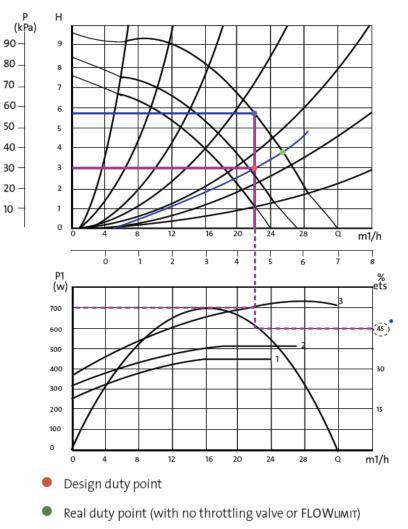

- FLOW *LIMIT* can set maximum system flow allowed without throtling valve.
- Usable in case of static ballancing of system (e.g. AHU bypass pump, main circulation branches).



BE > THINK > INNOVATE >

Magna 3 – FLOWlimit function Bypass Pump ballancing in as in good old days...

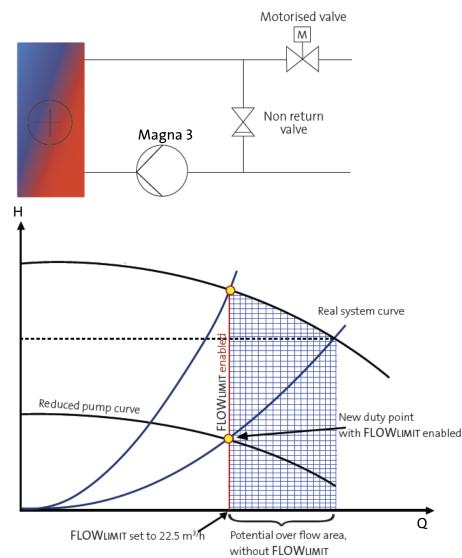
Resulted annual energy consumption of pump with ballancing

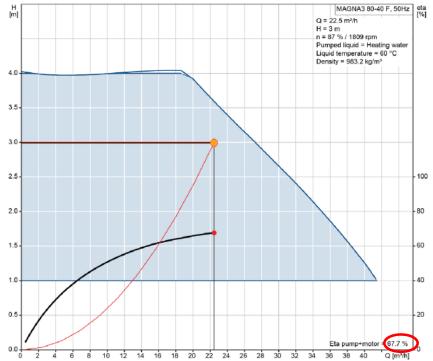

$$E_{electricity} = \frac{700 \cdot 8760}{100} = 6132 \ kWh$$

Resulted energy loss on the pump ballancing

Ph = q ρ g h / (3.6 10⁶) = Hydr. Power (kW) q = Volume Flow (m3/h) ρ = density (kg/m3) g = grav. acc (9.81 m/s2) h = delivered pressure(m)

Ph= 22,5 X 1000 X 9,81 X 2,5 / 3,6 X 10⁶= $\frac{0,153 \text{ kW}}{0,45}$ = 0,34 kW

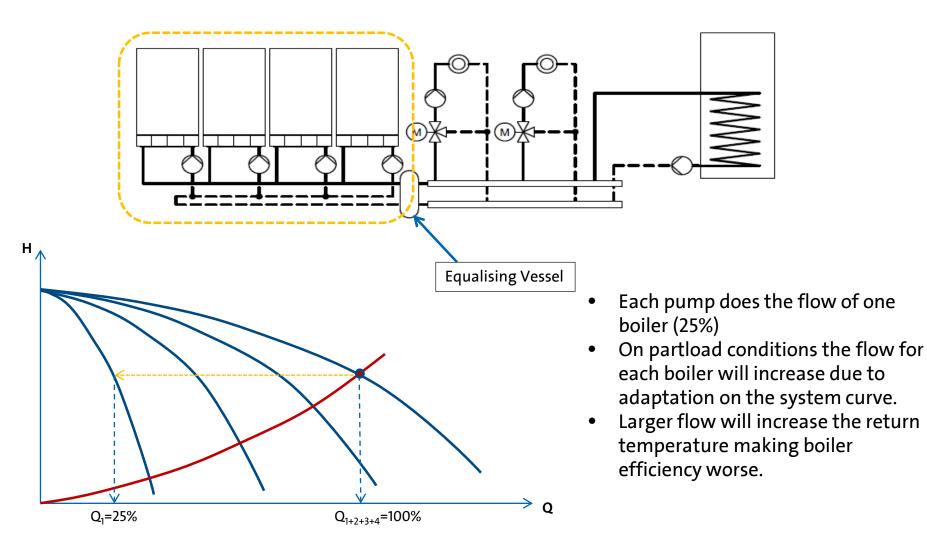

Annual energy losses: 0,34 X 8760 = 2978 kWh



New duty point

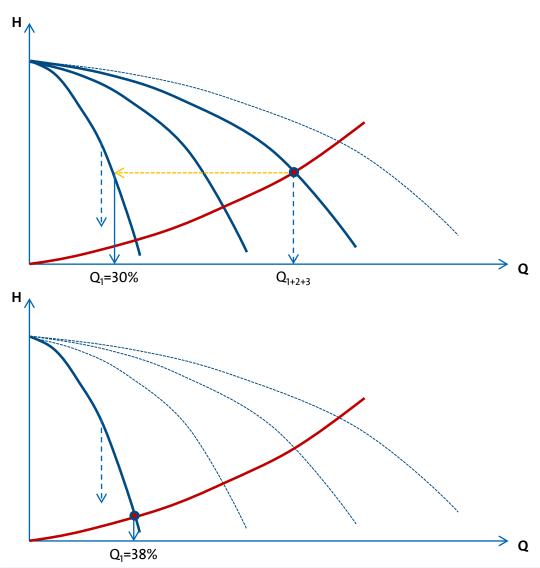
GRUNDFOS isolutions

Magna 3 – FLOWlimit funtion Bypass pump ballancing using FlowLimit and no valve



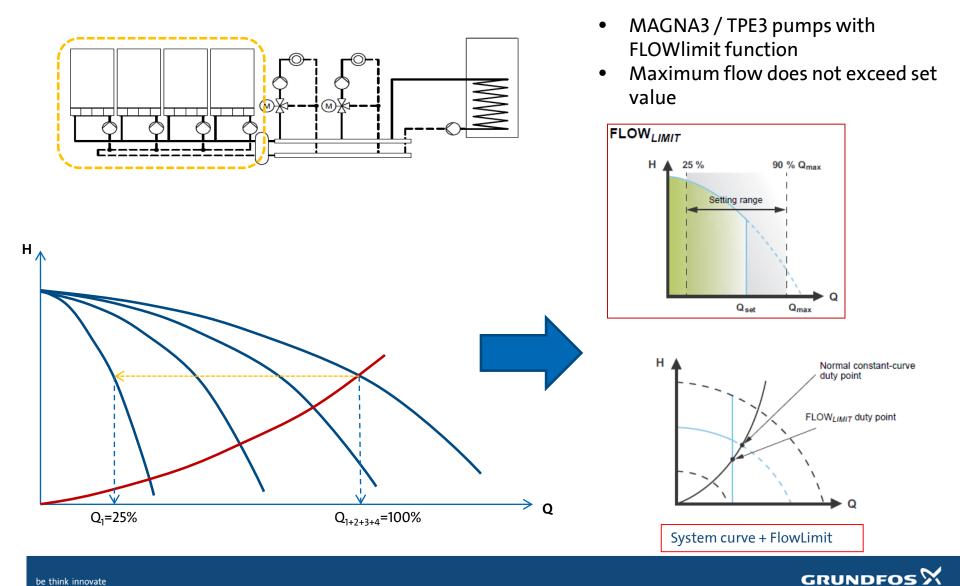
Chosen Pump: MAGNA3 80-40 Annual Consumption : 2331 kWh/yr

Basic solution energy:	6132 kWh
New solution energy:	2331 kWh
Savings:	3801 kWh = 62%



Magna 3 – FLOWlimit Function Gas fired boilers

Magna 3 – FLOWlimit Function Gas fired boilers

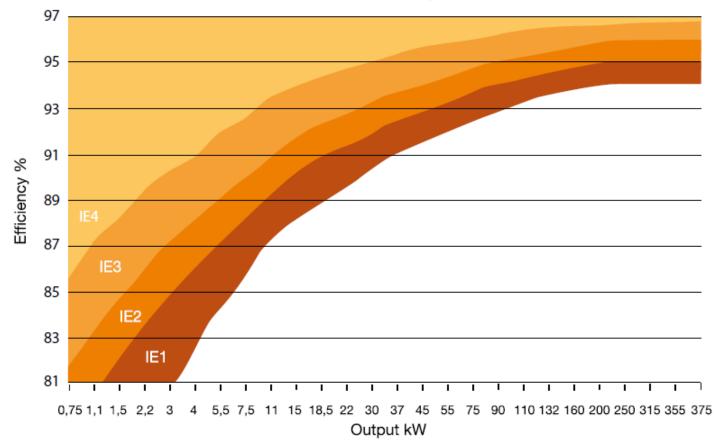


- 3 boilers working
- The specific flow for one boiler <u>could be 20% higher</u> than design flow

- > 1 boiler working
- One single boiler out of 4 on function could result 50% higher flow without flow limitation.

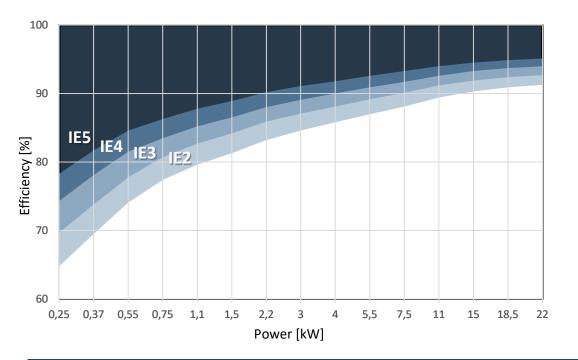
Magna 3 – FLOWlimit Function Gas fired boilers

Pumps with High Efficiency MGE motors up to 11kW


TPE(3)(D), NBE, NKE, CRE, CME

- High Efficiency with PM Syncron motors up to 11kW
- Wide Application range
- Integrated Measurments and Diagnose features
- Comprehensinve control solutions with no External PLC needed

IE motor eff. Classes until 31.12.2016


IE Classes - 4 pole

50

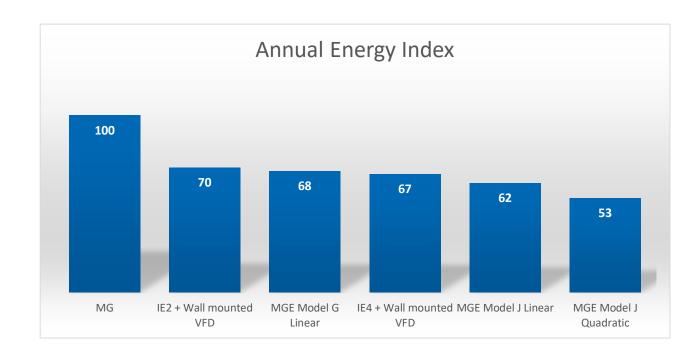
New Development– **E5** MGE motors

Állandó mágneses szinkron-reluktancia motorok beépített frekvenciaváltóval

- 11 kW power
- IEC 60034-30-2 only with integrated frequency drive

Efficiency

 Is it worst to use VFD up to 11kW?



be think innovate

Comparison of external VFD vs. MGE

IE2 and IE4 motors with VFD Compared with MGE and new MGE Motors

		MG	IE2 + ext. VFD	MGE Model G Linear	IE4 + ext. VFD	MGE Model J Linear	MGE Model J Quadratic
kWh:	kWh:	18.528	13.055	12.680	12.395	11.447	9.890
Index:	Index:	100	70	68	67	62	53

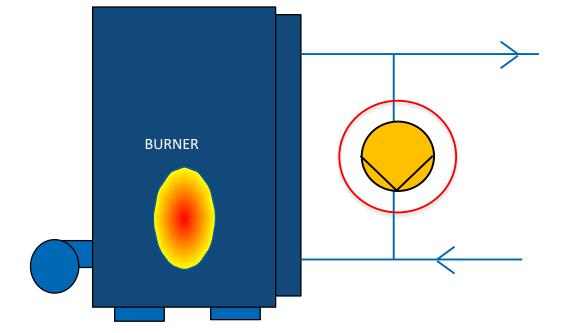
Inteligent solution – Complex solutions

 What is beyond the pump? Can I do more than simply moving the water?

be think innovate

Inteligent solution – Complex solutions

• Boiler shunt pump control



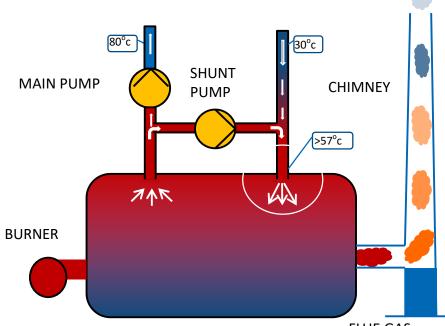
be think innovate

BOILER SHUNT SOLUTION STANDARD SCENARIO

CONVENTIONAL BOILER – SHUNT PUMP SOLUTION

TARGET

Adjust return water temperature to installation requirements...


MEANS

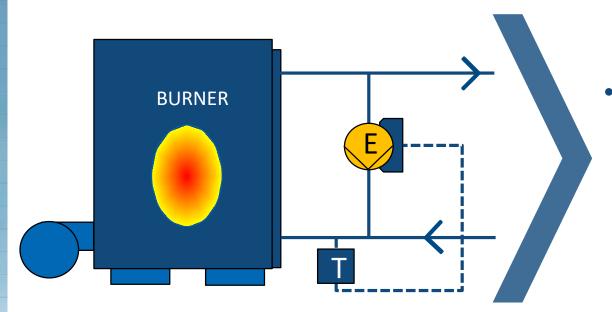
Boiler shunt – connection between the flow and return pipe, equipped with a pump creating a mixing loop

GRUNDFOS X

BOILER SHUNT SOLUTION STANDARD SOLUTION

SHUNT PUMP INSTALLATION SETUP SOLUTION

FLUE GAS

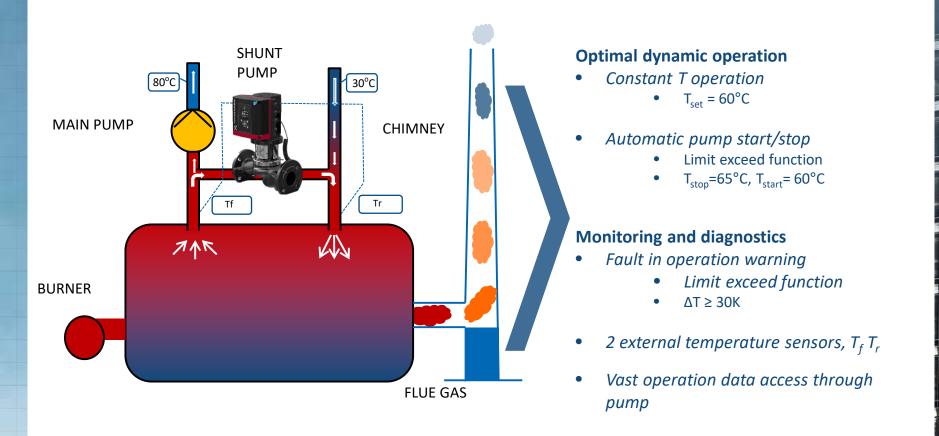

Sizing Example:

Power Boler:	1000 kW
Flow temp.boiler:	80°C
Return temp. system:	30°C
Min. return to boiler:	60°C
Flow "system": <u>1000 X 0,86</u> = 50	<u>17,2 m³/h</u>
Flow "boiler": <u>1000 X 0,86</u> = 20	<u>43,0 m³/h</u>
Flow shunt pump: (43,0 – 17,2) =	25,8 m ³ /h

GRUNDFOS

BOILER SHUNT DYNAMIC SOLUTION

SHUNT PUMP INSTALLATION SETUP SOLUTION


Temperature controlled boiler shunt pump

•Some energy savings

•Dynamic operation

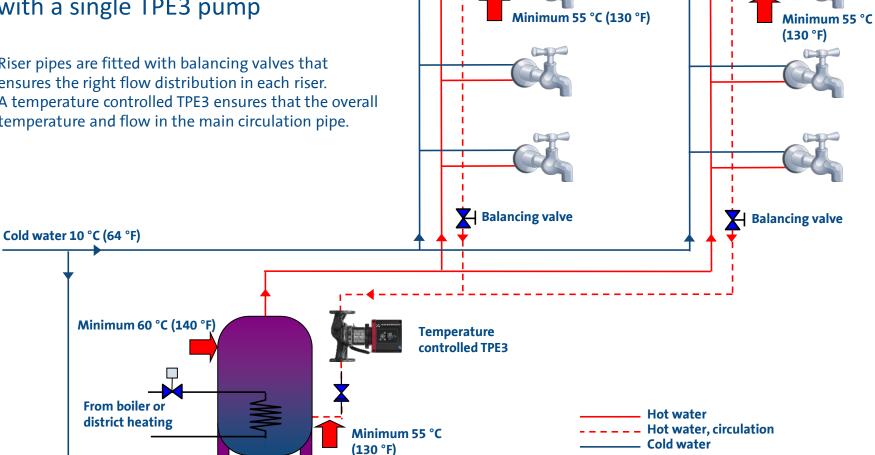
GRUNDFOS X

BOILER SHUNT GRUNDFOS SOLUTION

GRUNDFOS X

Inteligent solution – Complex solutions

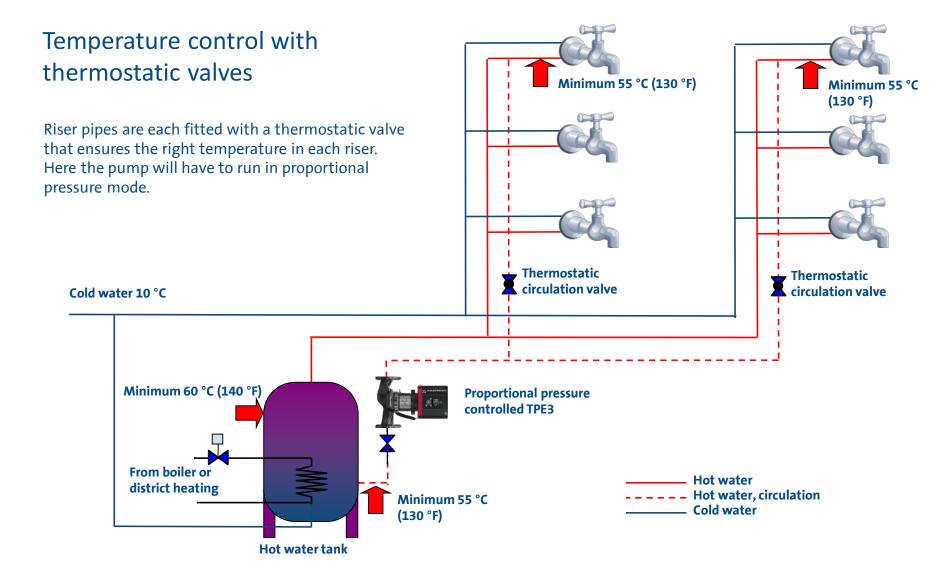
• Domestic Hot Water System



be think innovate

DHW system control

Temperature control with a single TPE3 pump


Riser pipes are fitted with balancing valves that ensures the right flow distribution in each riser. A temperature controlled TPE3 ensures that the overall temperature and flow in the main circulation pipe.

Hot water tank

DHW system control

GRUNDFOS 🕅

How to make your system bad using electronic pumps?

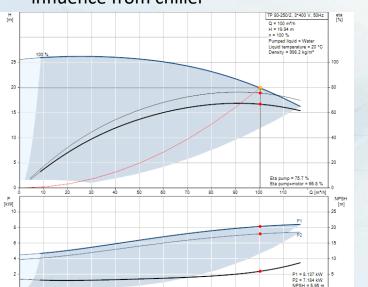
• How not to do examples

be think innovate

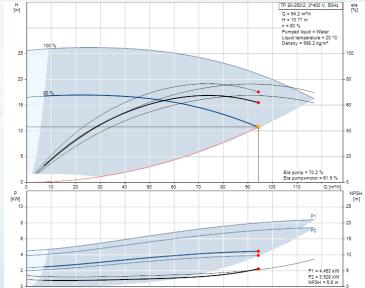
Cooling tower pumps cavitating

Why:

- Pressure losses smaller than designed => different system curve.
- Open loop control mode no feedback from system, only based on condened water temp.


Effects:

- 1 pump failure in first 12 months impeller distroyed
- 2 set of 4 NRV destroyed in 12 months


Solutions:

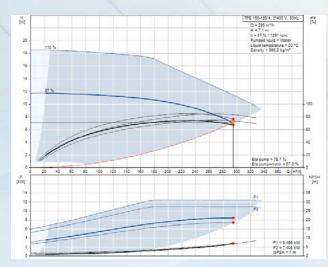
- Defining real system curve using PA kit
- Applying Constant diff. Pressure with temperature influence from chiller

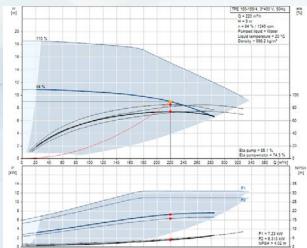
PROIECT vs. REALITATE

GRUNDFOS

5MW wood fired boiler – efficiency issues

Why


- Smaller system pressuredrop => different system curve
- Electronic pump without pressure sensor
- No balancing valves


Results:

- At 80% speed pump get out of QH curve high noise, high bearing loads, possibly cavitation
- Boiler thermal capacity decrease (bad efficiency) due to higher water flow than designed

Solutions:

- Installing DP sensors, setting correct DP to avoid pump runing outside of range.
- Hydraulic balancing must be done with existing equipments.

GRUNDFOS

Recap

- Using electronic pumps let us reduce electrical consumption if right control mode is selected
- Using electronic pumps will not replace balancing valves, but might reduce their number.
- Using zoning of systems will allow you to get better global efficiency
- Use of added value functions will allow you to diagnose the systems weak points and give a better feedback.
- Smart solutions will let you do your job better, but it won't do your job!
- Better LCC level will lead you to more valuable buildings and systems.

Take away message:

Smart Building Era is the present. Using of smart technologies is no longer just a fancy thing. It will make the difference between good solutions and best solutions!

Questions?

Thank You!

